

Antenna Gain.

- Antennas are passive devices.
	- The power radiated is always less than the power fed to the antenna.
	- Gain comes from increasing the power in one direction at the expense of another direction.

 $5₅$

E9A12 -- How much gain does an antenna have
compared to a 1/2-wavelength dipole when it
has 6 dB gain over an isotropic antenna?
^ 3.85 dB compared to a 1/2-wavelength dipole when it has 6 dB gain over an isotropic antenna? E9A12 -- How much gain does an antenna have
compared to a 1/2-wavelength dipole when it
has 6 dB gain over an isotropic antenna?
A. 3.85 dB
B. 6.0 dB
C. 8.15 dB
D. 2.79 dB E9A12 -- How much gain does an antenna have
compared to a 1/2-wavelength dipole when it
has 6 dB gain over an isotropic antenna?
A. 3.85 dB
B. 6.0 dB
C. 8.15 dB
D. 2.79 dB E9A12 -- How much gain does an antenna have
compared to a 1/2-wavelength dipole when it
has 6 dB gain over an isotropic antenna?
A. 3.85 dB
B. 6.0 dB
C. 8.15 dB
D. 2.79 dB E9A12 -- How much gain does an antenna have
compared to a 1/2-wavelength dipole when it
has 6 dB gain over an isotropic antenna?
A. 3.85 dB
B. 6.0 dB
C. 8.15 dB
D. 2.79 dB

-
-
-

11

EP AS SIGN OF ASSIGN BRACES AS A SIGN OF ASSIGN D. 2.79 dB

D. 2.79 dB
 **E9B07 -- How does the total amount of

radiation emitted by a directional gain antenna

compare with the total amount of radiation

emitted from an i** radiation emitted by a directional gain antenna compare with the total amount of radiation emitted from an isotropic antenna, assuming each is driven by the same amount of power? E9B07 -- How does the total amount of
radiation emitted by a directional gain antenna
compare with the total amount of radiation
emitted from an isotropic antenna, assuming
each is driven by the same amount of power?
A. Th antenna is increased by the gain of the antenna **E9B07 -- How does the total amount of radiation emitted by a directional gain antenna compare with the total amount of radiation emitted from an isotropic antenna, assuming each is driven by the same amount of power?
A. E9B07 -- How does the total amount of

radiation emitted by a directional gain antenna

compare with the total amount of radiation

emitted from an isotropic antenna, assuming

each is driven by the same amount of power?
 E9B07 -- How does the total amount of radiation emitted by a directional gain antenna compare with the total amount of radiation emitted from an isotropic antenna, assuming each is driven by the same amount of power?
A. T**

- antenna is stronger by its front to back ratio
- - stronger than that from the directional antenna

21

-
- RADIATED:

Radiation and Ohmic Resistance

 Ohmic Resistance.

 The resistance of the materials used in the construction

of the antenna is called the "Ohmic resistance" or the

"loss resistance". of the antenna is called the "Ohmic resistance" or the "loss resistance".
	- The Ohmic resistance includes the ground losses.
	- Total Resistance.
		- The total resistance is the sum of the radiation resistance and the Ohmic resistance.

Feed Point Impedance

- The feed point impedance changes with:
	- Frequency.
	- Position of the feed point along antenna.
	- The length/diameter ratio of conductor.
	- The distance to nearby objects.
		- Height above ground.
		- Other antennas.
		- Buildings.
		- Power lines.

Antenna Pattern Types

- Azimuthal and Elevation Patterns.
	- For a horizontally-polarized antenna:
		- The E plane pattern is parallel to the surface of the Earth and shows the intensity of the electric field at different directions from the antenna.
			- This is called the "azimuthal" pattern.
		- The H plane pattern is perpendicular to the surface of the Earth and shows the intensity of the electric field at different elevation angles from the antenna.
			- This is called the "elevation" pattern.

Antenna Pattern Types

-
- **FACIST AND REVENTS:**
 EXECTS OF ANTENDES
 EXECTS OF ANTENDES

 Azimuthal and Elevation Patterns.

 The azimuthal pattern shows the radiation around the

 The elevation pattern shows the radiation at various

angles antenna.
	- The elevation pattern shows the radiation at various angles above the horizontal.
		- An important part of the elevation pattern is the angle above horizontal where the field is the strongest.
			- This is called the "take-off angle".
			- For DX operations, the lower the take-off angle, the better.
			- For close-in communications, a higher take-off angle is better.

Practical Antennas

Effects of Ground and Ground Systems.

- The radiation pattern of an antenna over real ground is ALWAYS affected by the conductivity and dielectric constant of the soil.
	- True for horizontally-polarized mounted at some distance above the ground.
	- Especially true for vertically-polarized antennas mounted on the ground.
		- Poor ground conductivity raises the take-off angle.

Practical Antennas

Effects of Ground and Ground Systems.

- Terrain.
- Radiation patterns approach their published values only on flat open terrain. **Practical Antennas**

f Ground and Ground Systems.

inin.

inflat open terrain.

inflat open terrain.

id hills and/or buildings & all bets are off!

an antenna is mounted on a slope or hillside, the

interior take-off ang
	- Add hills and/or buildings & all bets are off!
	- If an antenna is mounted on a slope or hillside, the radiation pattern is tilted.
		- Higher take-off angle in uphill direction.
		- Lower take-off angle in downhill direction.
	- Hilltops are good, but not because of elevation.
		-

• Ierrain.

• Radiation patterns approach their published values only

on flat open terrain.

• Add hills and/or buildings & all bets are off!

• If an antenna is mounted on a slope or hillside, the

radiation pattern is efficiency of a ground-mounted quarter-wave vertical antenna? radiation pattern is titled.

Thigher take-off angle in uphill direction.

This convertible in downhill direction.

This case good, but not because of elevation.

All directions are downhill – therefore lower take-off angl • Lower take-off angle in downhill direction.
• Hilltops are good, but not because of elevation.
• All directions are downhill – therefore lower take-off angle.
E9A10 -- Which of the following improves the efficiency of ESA10 -- Which of the following improves the

CALL directions are downhill - therefore lower take-off angle.

COMPTER THE REFERENCE ON THE REFERENCE OF A ground-mounted quarter-wave

vertical antenna?

A. Installing a radi **E9A10 -- Which of the following improves the efficiency of a ground-mounted quarter-wave vertical antenna?**
A. Installing a radial system
B. Isolating the coax shield from ground
C. Shortening the radiating element
D. All

-
-
-
-

E9A11 -- Which of the following factors
determines ground losses for a ground-
mounted vertical antenna operating in the 3
MHz to 30 MHz range? determines ground losses for a groundmounted vertical antenna operating in the 3 MHz to 30 MHz range? **E9A11 -- Which of the following factors
determines ground losses for a ground-
mounted vertical antenna operating in the 3
MHz to 30 MHz range?**
A. The standing-wave ratio
B. Distance from the transmitter
C. Soil conducti E9A11 -- Which of the following factors
determines ground losses for a ground-
mounted vertical antenna operating in the 3
MHz to 30 MHz range?
A. The standing-wave ratio
B. Distance from the transmitter
C. Soil conductivi **E9A11 -- Which of the following factors

determines ground losses for a ground-

mounted vertical antenna operating in the 3

MHz to 30 MHz range?

A. The standing-wave ratio

B. Distance from the transmitter

C. Soil con E9A11 -- Which of the following factors**
 determines ground losses for a ground-
 mounted vertical antenna operating in the 3
 MHz to 30 MHz range?

A. The standing-wave ratio

B. Distance from the transmitter

C. S

-
-
-
-

E9C13 -- How does the radiation pattern of a
horizontally polarized 3-element beam antenna
vary with increasing height above ground?
A. The takeoff angle of the lowest elevation lobe horizontally polarized 3-element beam antenna vary with increasing height above ground? E9C13 -- How does the radiation pattern of a
horizontally polarized 3-element beam antenna
vary with increasing height above ground?
A. The takeoff angle of the lowest elevation lobe
increases
B. The takeoff angle of the l E9C13 -- How does the radiation pattern of a
horizontally polarized 3-element beam antenna
wary with increasing height above ground?
A. The takeoff angle of the lowest elevation lobe
increases
B. The takeoff angle of the l E9C13 -- How does the radiation pattern of a

horizontally polarized 3-element beam antenna

wary with increasing height above ground?

A. The takeoff angle of the lowest elevation lobe

increases

B. The takeoff angle of E9C13 -- How does the radiation pattern of a

horizontally polarized 3-element beam antenna

vary with increasing height above ground?

A. The takeoff angle of the lowest elevation lobe

increases

B. The takeoff angle of

- increases
- decreases
	-
	-

-
- -
	-

57

Practical Antennas

Dipole Variations.

- G5RV Antenna.
	- This is one of the most popular multi-band HF wire antennas.
	- The G5RV antenna was originally designed by Lou Varney (G5RV) for 20m.
- **FIRM PROPRIMED ANTENDAMS**
• Variations.
• This is one of the most popular multi-band HF wire
• The G5RV antenna was originally designed by Lou
• The G5RV antenna was originally designed by Lou
• Varney (G5RV) for 20m.
• I a good match can be achieved on most HF bands.

E9C07 -- What is the approximate feed point
impedance at the center of a two-wire folded
dipole antenna?
A 300 obms impedance at the center of a two-wire folded dipole antenna? E9C07 -- What is the approximate feed point
impedance at the center of a two-wire folded
dipole antenna?
A. 300 ohms
B. 72 ohms
C. 50 ohms
D. 450 ohms E9C07 -- What is the approximate feed point
impedance at the center of a two-wire folded
dipole antenna?
A. 300 ohms
B. 72 ohms
C. 50 ohms
D. 450 ohms E9C07 -- What is the approximate feed point
impedance at the center of a two-wire folded
dipole antenna?
A. 300 ohms
B. 72 ohms
C. 50 ohms
D. 450 ohms E9C07 -- What is the approximate feed point
impedance at the center of a two-wire folded
dipole antenna?
A. 300 ohms
B. 72 ohms
C. 50 ohms
D. 450 ohms

- -
	-
	-

Loaded Whips

- The most common way to cancel the capacitive reactance is to add a loading coil in series with the radiating element.
	- Adding a loading coils adds loss.
	- Adding a loading coil narrows the SWR bandwidth.

Loaded Whips

- The loading coil can be placed anywhere along the length of the radiator.
	- Some antenna designs place the loading coil somewhere in the middle of the radiator.
		- This is called center loading.
		- Center loading increases the radiation resistance, increasing the efficiency.
		- The higher inductance required results in higher losses.
		- Center-loaded radiators are more difficult to construct mechanically.

Loaded Whips

- Hamsticks.
- Hamstick-style antennas are more efficient than conventional base-loaded mobile antennas. **• Hamstick-style antenna are more efficient than single band.** • Hamstick-style antennas are more efficient than conventional base-loaded mobile antennas. • Hamstick-style are the antenna series and to change band. • You
	- Hamstick-style antennas are relatively low cost. • About \$20 to \$30.
	- -

83 and the set of the

-
-
- -

87 and the state of the state of

- capacitive reactance decreases
- capacitive reactance increases
	- capacitive reactance decreases
	- capacitive reactance increases

Traveling Wave Antennas

- Long-wire antennas.
	- The simplest traveling wave antenna is the long wire.
	-
- **Franctical Antennas**
 Example 12
 Practical Antennas

 The simplest traveling wave antenna is the long wire.

 A long-wire antenna is 1λ long or more.

 A long-wire antenna is typically fed 1/4λ from one end.

 A
	- lobes.
		- The longer the wire, the closer the major lobes are to the wire.

Traveling Wave Antennas.

- Rhombic Antennas.
- Adding a termination resistor at the far end of a resonant rhombic antenna changes it into a nonresonant rhombic antenna. **Practical Antennas**

Fractical **Antennas**

mbic antennas.

mbic antenna. • A termination resistor at the far end of a

sonant rhombic antenna.

• A terminated rhombic antenna.

• A terminated rhombic antenna is uni-direct
	-
	-
	- load over a wide frequency range.
	- A very large area is required.
	- 4 tall supports are needed.

Traveling Wave Antennas.

- Beverage Antennas.
	- Most amateur radio station antennas are used for both receiving and transmitting.
	- On 160m & 80m, a separate antenna is often used for receiving.
		- These receive-only antennas are often lossy antennas that reject noise.
			- The atmospheric noise on the lower bands is high enough that antenna gain is not important.
			- A dramatic improvement in signal-to-noise ratio can be achieved.

- wire
- wire
	-
	-

E9H01 -- When constructing a Beverage
antenna, which of the following factors should
be included in the design to achieve good
performance at the desired frequency? antenna, which of the following factors should be included in the design to achieve good performance at the desired frequency? **E9H01 -- When constructing a Beverage

antenna, which of the following factors should

be included in the design to achieve good

performance at the desired frequency?

A. Its overall length must not exceed 1/4

wavelengt E9H01 -- When constructing a Beverage

antenna, which of the following factors should

be included in the design to achieve good

performance at the desired frequency?

A. Its overall length must not exceed 1/4

wavelengt E9H01 -- When constructing a Beverage**
 antenna, which of the following factors should
 be included in the design to achieve good
 performance at the desired frequency?

A. Its overall length must not exceed 1/4

wa **E9H01 -- When constructing a Beverage**
 **antenna, which of the following factors should

be included in the design to achieve good

performance at the desired frequency?**

A. Its overall length must not exceed 1/4

wavele

- wavelength
- above ground
-
-

Phased Arrays

- A phased array is 2 (or more) vertical antennas (elements) fed with specific phase relationships.
	- Most AM broadcast station antennas are phased arrays.

Phased Arrays

- If the elements are fed 180° out-of-phase, a pattern in line with the elements results.
	- a figure-8 pattern in line with the array results.

1/4-wavelength vertical antennas spaced 1/2 wavelength apart and fed 180 degrees out of phase? ESCO1 -- What is the radiation pattern of two
1/4-wavelength vertical antennas spaced 1/2-
wavelength apart and fed 180 degrees out of
phase?
A. Cardioid
B. Omni-directional
C. A figure-8 broadside to the axis of the array E9C01 -- What is the radiation pattern of two

1/4-wavelength vertical antennas spaced 1/2-

wavelength apart and fed 180 degrees out of

phase?

A. Cardioid

B. Omni-directional

C. A figure-8 broadside to the axis of the E9C01 -- What is the radiation pattern of two
1/4-wavelength vertical antennas spaced 1/2-
wavelength apart and fed 180 degrees out of
phase?
A. Cardioid
B. Omni-directional
C. A figure-8 broadside to the axis of the array E9C01 -- What is the radiation pattern of two
1/4-wavelength vertical antennas spaced 1/2-
wavelength apart and fed 180 degrees out of
phase?
A. Cardioid
B. Omni-directional
C. A figure-8 broadside to the axis of the array

-
-
-

E9C02 -- What is the radiation pattern of two
1/4-wavelength vertical antennas spaced 1/4-
wavelength apart and fed 90 degrees out of
phase? 1/4-wavelength vertical antennas spaced 1/4 wavelength apart and fed 90 degrees out of phase? E9C02 -- What is the radiation pattern of two
1/4-wavelength vertical antennas spaced 1/4-
wavelength apart and fed 90 degrees out of
phase?
A. Cardioid
B. A figure-8 end-fire along the axis of the array
C. A figure-8 broa E9C02 -- What is the radiation pattern of two
1/4-wavelength vertical antennas spaced 1/4-
wavelength apart and fed 90 degrees out of
phase?
A. Cardioid
B. A figure-8 end-fire along the axis of the array
C. A figure-8 broa E9C02 -- What is the radiation pattern of two
1/4-wavelength vertical antennas spaced 1/4-
wavelength apart and fed 90 degrees out of
phase?
A. Cardioid
B. A figure-8 end-fire along the axis of the array
C. A figure-8 broa E9C02 -- What is the radiation pattern of two

1/4-wavelength vertical antennas spaced 1/4-

wavelength apart and fed 90 degrees out of

phase?

A. Cardioid

B. A figure-8 end-fire along the axis of the array

C. A figure-

-
-
-

A. Cardioid

B. A figure-8 end-fire along the axis of the array

C. A figure-8 broadside to the axis of the array

D. Omni-directional
 **E9C03 -- What is the radiation pattern of two

1/4-wavelength vertical antennas space** 1/4-wavelength vertical antennas spaced 1/2 wavelength apart and fed in phase? D. Omni-directional
 **E9C03 -- What is the radiation pattern of two

1/4-wavelength vertical antennas spaced 1/2-

wavelength apart and fed in phase?

A. Omni-directional

B. Cardioid

C. A Figure-8 broadside to the axis o** E9C03 -- What is the radiation pattern of two
1/4-wavelength vertical antennas spaced 1/2-
wavelength apart and fed in phase?
A. Omni-directional
B. Cardioid
C. A Figure-8 broadside to the axis of the array
D. A Figure-8 e E9C03 -- What is the radiation pattern of two
1/4-wavelength vertical antennas spaced 1/2-
wavelength apart and fed in phase?
A. Omni-directional
B. Cardioid
C. A Figure-8 broadside to the axis of the array
D. A Figure-8 e E9C03 -- What is the radiation pattern of two
1/4-wavelength vertical antennas spaced 1/2-
wavelength apart and fed in phase?
A. Omni-directional
B. Cardioid
C. A Figure-8 broadside to the axis of the array
D. A Figure-8 e

-
-
-
-

Antennas for Space Communications

- Gain and antenna size.
	- At VHF & UHF, Yagi antennas are the most commonlyused type for satellite communications.
	- At microwave frequencies, parabolic dish antennas are often required.
	- For both types of antennas, the following rule-ofthumb applies:
		- The bigger the antenna (in wavelengths) the more gain.
		- A Yagi antenna with a longer boom has more gain.
		- A dish antenna with twice the diameter has 4x the gain (6dB).

Antennas for Space Communications

- Pointing the antenna.
	- Directional antennas for terrestrial communications use a single rotator.
		- Azimuth.
	- Directional antennas for satellite communications often use 2 rotators to more accurately point antenna at satellite.
		- Azimuth.
		- Elevation.

E9D01 -- How much does the gain of an ideal
parabolic dish antenna change when the
operating frequency is doubled? parabolic dish antenna change when the operating frequency is doubled? E9D01 -- How much does the gain of an ideal
parabolic dish antenna change when the
operating frequency is doubled?
A. 2 dB
B. 3 dB
C. 4 dB
D. 6 dB E9D01 -- How much does the gain of an ideal
parabolic dish antenna change when the
operating frequency is doubled?
A. 2 dB
B. 3 dB
C. 4 dB
D. 6 dB E9D01 -- How much does the gain of an ideal
parabolic dish antenna change when the
operating frequency is doubled?
A. 2 dB
B. 3 dB
C. 4 dB
D. 6 dB E9D01 -- How much does the gain of an ideal
parabolic dish antenna change when the
operating frequency is doubled?
A. 2 dB
B. 3 dB
C. 4 dB
D. 6 dB

-
-

Receiving Loop Antennas for Direction Finding

- For a single-turn loop, the size must be small compared to the wavelength.
	-
- **The length of the wire should be 0.08**
• The length of the wire should be 0.08λ or less.
• Adding turns or making the loop bigger results in a
• Adding turns or making the loop bigger results in a
• Adding turns or maki higher output voltage (gain).
- Loop antennas are used for receiving because of their noise-rejecting properties rather than their gain.

Receiving Loop Antennas for Direction Finding

• The pennant flag antenna, the Beverage antenna, & other low-band receive antennas are all used because they reject noise; resulting in a better signal-to-noise ratio even though the signal level is reduced.

Receiving Loop Antennas for Direction Finding

• It is important for mobile/portable stations have some way to attenuate the received signal to prevent receiver overload & to improve the accuracy of the bearings as the station gets closer to the transmitter.

143

An antenna system is more than just the antenna itself.

- Antenna.
- Supports.
- Feed line.
- Matching devices.
- Metering devices.

Practical Antennas **• Practical Antennas**
• When calculating the ERP, include:
• Transmitter power output (PEP).
• Antenna gain (dBi or dBd).
• edd line loss (dB).
• Other system losses (dB).
• ERP = Power Output + Antenna Gain – System Loss

Effective Radiated Power

- When calculating the ERP, include:
	- Transmitter power output (PEP).
	-
	-
	-
	-

• When calculating the ERP, include:
• Transmitter power output (PEP).
• Antenna gain (dBi or dBd).
• Feed line loss (dB).
• Other system losses (dB).
• ERP = Power Output + Antenna Gain – System Losses
E9A02 -- What is t relative to a dipole of a repeater station with 150 watts transmitter power output, 2 dB feed line loss, 2.2 dB duplexer loss and 7 dBd antenna gain? E9A02 -- What is the effective radiated power
relative to a dipole of a repeater station with
150 watts transmitter power output, 2 dB feed
line loss, 2.2 dB duplexer loss and 7 dBd
antenna gain?
A. 1977 watts
B. 78.7 watt E9A02 -- What is the effective radiated power
relative to a dipole of a repeater station with
150 watts transmitter power output, 2 dB feed
line loss, 2.2 dB duplexer loss and 7 dBd
antenna gain?
A. 1977 watts
B. 78.7 watt E9A02 -- What is the effective radiated power
relative to a dipole of a repeater station with
150 watts transmitter power output, 2 dB feed
line loss, 2.2 dB duplexer loss and 7 dBd
antenna gain?
A. 1977 watts
B. 78.7 watt E9A02 -- What is the effective radiated power
relative to a dipole of a repeater station with
150 watts transmitter power output, 2 dB feed
line loss, 2.2 dB duplexer loss and 7 dBd
antenna gain?
A. 1977 watts
B. 78.7 watt

-
-
-
-

E9A06 -- What is the effective radiated power
relative to a dipole of a repeater station with
200 watts transmitter power output, 4 dB feed
line loss, 3.2 dB duplexer loss, 0.8 dB circulator
loss and 10 dBd antenna gain? relative to a dipole of a repeater station with 200 watts transmitter power output, 4 dB feed line loss, 3.2 dB duplexer loss, 0.8 dB circulator E9A06 -- What is the effective radiated power
relative to a dipole of a repeater station with
200 watts transmitter power output, 4 dB feed
line loss, 3.2 dB duplexer loss, 0.8 dB circulator
loss and 10 dBd antenna gain?
A E9A06 -- What is the effective radiated power
relative to a dipole of a repeater station with
200 watts transmitter power output, 4 dB feed
line loss, 3.2 dB duplexer loss, 0.8 dB circulator
loss and 10 dBd antenna gain?
A E9A06 -- What is the effective radiated power
relative to a dipole of a repeater station with
200 watts transmitter power output, 4 dB feed
line loss, 3.2 dB duplexer loss, 0.8 dB circulator
loss and 10 dBd antenna gain?
A E9A06 -- What is the effective radiated power
relative to a dipole of a repeater station with
200 watts transmitter power output, 4 dB feed
line loss, 3.2 dB duplexer loss, 0.8 dB circulator
loss and 10 dBd antenna gain?
A E9A06 -- What is the effective radiated power
relative to a dipole of a repeater station with
200 watts transmitter power output, 4 dB feed
line loss, 3.2 dB duplexer loss, 0.8 dB circulator
loss and 10 dBd antenna gain?
A

- -
	-
	-

Impedance Matching

• If the impedance of the antenna does not match the impedance of the feed line, the best solution is to do the impedance matching at the feedpoint of the antenna.

Impedance Matching

- Impedance matching done at the transmitter:
	- Is convenient.
		- Adjustments can be made at the operating position
	- Is usually more expensive.
		- An external antenna tuner may be required.
	- Has higher transmission line losses.
		- The SWR on the transmission line is high.

Impedance Matching

- The delta match:
	- Matches a higher impedance transmission line to a lower impedance antenna.
	- Inherently balanced.
	- There is some radiation from the delta.
	- Is difficult to adjust. $A = 0.12\lambda$
B = 0.15x
	- No center insulator is required. \overrightarrow{v}

Impedance Matching

- A short length of transmission line connected in parallel with the antenna & feed line is called a stub match.
	- A stub match can match highly reactive loads.
	- A stub match can be made from a piece of coax.
	- The "universal stub system" is often used at VHF & UHF when the impedances to be matched are unknown & the stub lengths are manageable.

E9E01 -- What system matches a higher-
impedance transmission line to a lower-
impedance antenna by connecting the line to
the driven element in two places spaced a
fraction of a wavelength each side of element impedance transmission line to a lowerimpedance antenna by connecting the line to the driven element in two places spaced a fraction of a wavelength each side of element center? **E9E01 – What system matches a higher-**
 impedance transmission line to a lower-
 impedance antenna by connecting the line to
 the driven element in two places spaced a
 fraction of a wavelength each side of element E9E01 -- What system matches a higher-
impedance transmission line to a lower-
impedance antenna by connecting the line to
the driven element in two places spaced a
fraction of a wavelength each side of element
center?
A. **E9E01 -- What system matches a higher-
impedance transmission line to a lower-
impedance antenna by connecting the line to
the driven element in two places spaced a
fraction of a wavelength each side of element
center?**
 E9E01 -- What system matches a higher-
 impedance transmission line to a lower-
 impedance antenna by connecting the line to
 the driven element in two places spaced a
 fraction of a wavelength each side of elemen

-
-
-
-

169

EXECT:

A. The gamma matching system

B. The delta matching system

C. The omega matching system

D. The stub matching system

D. The stub matching system
 **E9E02 -- What is the name of an antenna

matching system that m** matching system that matches an unbalanced feed line to an antenna by feeding the driven element both at the center of the element and at a fraction of a wavelength to one side of center? E9E02 -- What is the name of an antenna

matching system that matches an unbalanced

feed line to an antenna by feeding the driven

element both at the center of the element and

at a fraction of a wavelength to one side o E9E02 -- What is the name of an antenna
matching system that matches an unbalanced
feed line to an antenna by feeding the driven
element both at the center of the element and
at a fraction of a wavelength to one side of
ce E9E02 -- What is the name of an antenna
matching system that matches an unbalanced
feed line to an antenna by feeding the driven
element both at the center of the element and
at a fraction of a wavelength to one side of
ce E9E02 -- What is the name of an antenna
matching system that matches an unbalanced
feed line to an antenna by feeding the driven
element both at the center of the element and
at a fraction of a wavelength to one side of
ce

- -
	-
	-

E9E03 -- What is the name of the matching
system that uses a section of transmission line
connected in parallel with the feed line at or
near the feed point? system that uses a section of transmission line connected in parallel with the feed line at or near the feed point? E9E03 -- What is the name of the matching
system that uses a section of transmission line
connected in parallel with the feed line at or
near the feed point?
A. The gamma match
B. The delta match
C. The omega match
D. The E9E03 -- What is the name of the matching
system that uses a section of transmission line
connected in parallel with the feed line at or
near the feed point?
A. The gamma match
B. The delta match
C. The omega match
D. The E9E03 -- What is the name of the matching
system that uses a section of transmission line
connected in parallel with the feed line at or
near the feed point?
A. The gamma match
B. The delta match
C. The omega match
D. The E9E03 -- What is the name of the matching
system that uses a section of transmission line
connected in parallel with the feed line at or
near the feed point?
A. The gamma match
B. The delta match
C. The omega match
D. The

-
-
-
-

- -
	- than the operating frequency
	- higher than the characteristic impedance of the transmission line

Velocity Factor and Electrical Length

- The velocity of propagation (V_P) is the speed at \vert which a wave travels down a feed line.
	- V_P is always less than the speed of light (C).
- The ratio of the velocity of propagation to the speed of light is called the "velocity factor".
	- $VF = V_p / C$.
	- VF is always less than 1.

E9F03 -- Why is the physical length of a coaxial
cable transmission line shorter than its
electrical length?
A. Skin effect is less pronounced in the coaxial cable transmission line shorter than its electrical length? **E9F03 -- Why is the physical length of a coaxial

cable transmission line shorter than its

electrical length?**

A. Skin effect is less pronounced in the coaxial

cable

B. The characteristic impedance is higher in a

par E9F03 -- Why is the physical length of a coaxial

cable transmission line shorter than its

electrical length?

A. Skin effect is less pronounced in the coaxial

cable

B. The characteristic impedance is higher in a

paral **E9F03 -- Why is the physical length of a coaxial cable transmission line shorter than its electrical length?**
A. Skin effect is less pronounced in the coaxial cable
B. The characteristic impedance is higher in a parallel **E9F03 -- Why is the physical length of a coaxial cable transmission line shorter than its electrical length?**
A. Skin effect is less pronounced in the coaxial cable
B. The characteristic impedance is higher in a parallel

- cable
- parallel feed line
- feed line
- coaxial cable than in air

E9F06 -- What is the approximate physical
length of an air-insulated, parallel conductor
transmission line that is electrically 1/2
wavelength long at 14.10 MHz? length of an air-insulated, parallel conductor transmission line that is electrically 1/2 wavelength long at 14.10 MHz? E9F06 -- What is the approximate physical
length of an air-insulated, parallel conductor
transmission line that is electrically 1/2
wavelength long at 14.10 MHz?
A. 15 meters
B. 20 meters
C. 10 meters
D. 71 meters E9F06 -- What is the approximate physical
length of an air-insulated, parallel conductor
transmission line that is electrically 1/2
wavelength long at 14.10 MHz?
A. 15 meters
B. 20 meters
C. 10 meters
D. 71 meters E9F06 -- What is the approximate physical
length of an air-insulated, parallel conductor
transmission line that is electrically 1/2
wavelength long at 14.10 MHz?
A. 15 meters
B. 20 meters
C. 10 meters
D. 71 meters E9F06 -- What is the approximate physical
length of an air-insulated, parallel conductor
transmission line that is electrically 1/2
wavelength long at 14.10 MHz?
A. 15 meters
B. 20 meters
C. 10 meters
D. 71 meters

-
-
-
-

187

Feed Line Loss

- All physical feed lines have some loss.
- Parallel-conductor feed lines have the lowest loss.
- Regardless of the type of transmission line, the loss **always** increases as frequency increases.

191

small-diameter coaxial cable such as RG-58 at 50 MHz? Example a solution of n_A 8,000
 $\frac{1}{11}$

Ladder line $\frac{4500}{11}$ and $\frac{91}{11}$ n_A 10,000
 $\frac{0.3}{0.2}$
 $\frac{0.3}{0.2}$
 E9F07 -- How does ladder line compare to
 SMHz?

A. Lower loss

B. Higher SWR

C. Smal Open-Wire Line (6000) 95-99 (n/a) 12,000 (0) 0.2
 E9F07 -- How does ladder line compare to
 Small-diameter coaxial cable such as RG-58 at
 50 MHz?

A. Lower loss

B. Higher SWR

C. Smaller reflection coefficient

D. E9F07 -- How does ladder line compare to
small-diameter coaxial cable such as RG-58 at
50 MHz?
A. Lower loss
B. Higher SWR
C. Smaller reflection coefficient
D. Lower velocity factor

-
-
-

Reflection Coefficient and SWR

- **FRANCES (FRANCES)**
 FRANCES (FRANCES)
 FRANCES (FRANCES)

 If $\rho > 0$, then voltage distribution along line is not

 Ratio of voltage peaks to voltage minimums is called

the voltage standing wave ratio (VSWR or sim constant. **Fransmission Lines**
 Fransmission Lines
 FRANCE TO A SURE AND SURFEX CONSTANT ON A SURFEX CALCE AND A SURFEX CALCE AND THE VALUATION TO SURFANCE THE VIOLENCE COMPUTED SURFACE COMPUTED SURFACE COMPUTED SURFACE COMPUTED
	- Ratio of voltage peaks to voltage minimums is called the voltage standing wave ratio (VSWR or simply SWR).
	-
- impedances.
	- If $Z_L > Z_0$ then SWR = Z_L / Z_0 $/$ Z₀
	- If $Z_L < Z_0$ then SWR = Z_0 / Z_L $/$ Z_L

Power Measurement

- There are several methods of measuring a transmitter's relative power output.
	- Neon bulb.
	- RF ammeter.
	- SWR meter.
	- Field strength meter.

E4B09 -- What is indicated if the current
reading on an RF ammeter placed in series with
the antenna feed line of a transmitter increases
as the transmitter is tuned to resonance? reading on an RF ammeter placed in series with the antenna feed line of a transmitter increases as the transmitter is tuned to resonance? E4B09 -- What is indicated if the current
reading on an RF ammeter placed in series with
the antenna feed line of a transmitter increases
as the transmitter is tuned to resonance?
A. There is possibly a short to ground in E4B09 -- What is indicated if the current
reading on an RF ammeter placed in series with
the antenna feed line of a transmitter increases
as the transmitter is tuned to resonance?
A. There is possibly a short to ground in E4B09 -- What is indicated if the current
reading on an RF ammeter placed in series with
the antenna feed line of a transmitter increases
as the transmitter is tuned to resonance?
A. There is possibly a short to ground in E4B09 -- What is indicated if the current
reading on an RF ammeter placed in series with
the antenna feed line of a transmitter increases
as the transmitter is tuned to resonance?
A. There is possibly a short to ground in

- line
-
- the antenna and feed line
-

Smith Chart

- First a review.
	- When a load (impedance) is connected to a transmission line & a signal source is connected to the other end of the line, energy is reflected back & forth along the line.
	- The ratio of voltage to current (impedance) varies at different points along the line.
	- At a distance of 1/2λ, the input impedance equals the load impedance.

Smith Chart

- Wavelength scales.
	- Additional scales around the outer edge of the chart are wavelength scales.
	- Wavelength scales are calibrated in fractions of an electrical wavelength in a transmission line.

added to a Smith chart during the process of solving problems? Feactance axis

E9G09 -- What third family of circles is often

added to a Smith chart during the process of

solving problems?

A. Standing-wave ratio circles

B. Antenna-length circles

C. Coaxial-length circles

D. Radi E9G09 -- What third family of circles is often
added to a Smith chart during the process of
solving problems?
A. Standing-wave ratio circles
B. Antenna-length circles
C. Coaxial-length circles
D. Radiation-pattern circles

- -
	-
-

-
-
-
-

219

Transmission Line Stubs and Transformers

- If the impedance of the load does not match the characteristic impedance of the transmission line, a portion of the power is reflected back. **Fransmission Lines**
 Fransmission Lines

• If the impedance of the load does not match the

• Characteristic impedance of the transmission line,

• The reflected power is reflected back.

• The reflected power combines
- power to create standing waves.

Transmission Line Stubs and Transformers

- **FACTER**
 **FRANCE TRANCE THE line is shorted at the far end, then the line will look like an open circuit.

 If the** the impedance is the opposite. **Fransmission Lines**
 Fransmission Line Stubs and Transformers

lote that at odd multiples of 1/4 λ along the line,

he impedance is the opposite.

• If the line is shorted at the far end, then the line will

look like
	- look like an open circuit.
	- If the line is open at the far end, then the line will look like a short circuit.

225

- in parallel with the coaxial feed line where it connects to the antenna
- series between the antenna terminals and the 50-ohm feed cable
- transmission line in series between the antenna terminals and the 50-ohm feed cable
- parallel with the 50-ohm cable where it attaches to the antenna

A. Connect a 1/4-wavelength open stub of 300-ohm twinlead
in parallel with the coaxial feed line where it connects to
the antenna
B. Insert a 1/2 wavelength piece of 300-ohm twinlead in
series between the antenna terminals wavelength transmission line present to a generator when the line is shorted at the far end? A. Very high impedance

The same as the characteristic connect a 1/2 wavelength shorted stub of 75-ohm cable in

parallel with the 50-ohm cable where it attaches to the

antenna
 E9F04 -- What impedance does a 1/2-
 E9F D. Connect a 1/2 wavelength shorted stub or 75-onm cable in
parallel with the 50-ohm cable where it attaches to the
antenna
antenna
E9F04 -- What impedance does a 1/2-
wavelength transmission line present to a
generat E9F04 -- What impedance does a 1/2-
wavelength transmission line present to a
generator when the line is shorted at the far
end?
A. Very high impedance
B. Very low impedance
C. The same as the characteristic impedance of
t E9F04 -- What impedance does a 1/2-
wavelength transmission line present to a
generator when the line is shorted at the far
end?
A. Very high impedance
B. Very low impedance
C. The same as the characteristic impedance of
t

-
- - the line
	- generator

wavelength transmission line present to a generator when the line is shorted at the far end? D. Very low impedance

1994)

A. Very high impedance does a 1/4-

1994 wavelength transmission line present to a

1994

1994 generator when the line is shorted at the far

1994

A. Very high impedance

B. Very low impedanc E9F13 -- What impedance does a 1/4-

wavelength transmission line present to a

generator when the line is shorted at the far

end?

A. Very high impedance

B. Very low impedance

C. The same as the characteristic impedanc E9F13 -- What impedance does a 1/4-
wavelength transmission line present to a
generator when the line is shorted at the far
end?
A. Very high impedance
B. Very low impedance
C. The same as the characteristic impedance of
t E9F13 -- What impedance does a 1/4-
wavelength transmission line present to a
generator when the line is shorted at the far
end?
A. Very high impedance
B. Very low impedance
C. The same as the characteristic impedance of
t

- -
	- the transmission line
	-

Scattering (S) Parameters

- Scattering parameters or S parameters are a way of characterizing a circuit in terms of the signals appearing at the various connections (ports) to the circuit. **Fransmission Lines**
etering parameters or S parameters are a way
tearing parameters or S parameters are a way
earing at the various connections (ports) to
circuit.
• Incident -- Applied to the port.
• Reflected -- Reflect
	- These signals may be:
		-
		-
		-

243

Antenna and Network Analyzers

- Antenna Analyzers.
- The antenna feel line is connected directly the the antenna analyzer input port. **Fransmission Lines**

and Network Analyzers

enna Analyzers

en antenna feel line is connected directly the the

entenna analyzer input port.

Ince antenna analyzers contain their own signal

ource, no additional equipment **Transmission Lines**
and Network Analyzers
na Analyzers.
antenna feel line is connected directly the the
enana analyzer input port.
ce antenna analyzers contain their own signal
crce, no additional equipment is required.
S
	- Since antenna analyzers contain their own signal source, no additional equipment is required.
		-

Antenna and Network Analyzers.

- **FRANCE (TRANCES)**
 FRANCE (TRANCES)
 FRANCE (TRANCES)
 FRANCE (TRANCES)
 FRANCE (TRANCES)
 **A vector network analyzer (VNA) is similar to an

antenna analyzers only measure** S_{11} **.

 VNAs measure all four S para** antenna and Network Analyzers.

• A vector network Analyzers.

• A vector network analyzer (VNA) is similar to an

antenna analyzer, but is more powerful.

• Antenna analyzers only measure S₁₁.

• VNAs measure all four S **Fransmission Lines**
 Fransmission Lines

in a and Network Analyzers.

vector network analyzer (VNA) is similar to an
 \cdot Antenna analyzer, but is more powerful.
 \cdot Antenna analyzers only measure S_{11} .
 \cdot VNA
	-
	-
- calibration:
	-
	-
	-

Antenna Modeling and Design

- The radiation pattern and other operational factors depend upon whether the measurements are taken in the "near field" or the "far field" of the antenna. **Antenna Design
• Antenna Design
• The radiation pattern and other operational
actors depend upon whether the measurements
• Te taken in the "near field" or the "far field" of
• The boundary between the near & far fields i Example 20**
 Consider Alternation Design

an Modeling and Design

totors depend upon whether the measurements

taken in the "near field" or the "far field" of

antenna.

The boundary between the near & far fields is not
	- The boundary between the near & far fields is not welldefined but is several wavelengths from antenna.
	-

Antenna Modeling and Design

- In the far field:
	- The radiation pattern is not dependent on the distance from the antenna.
	- The energy absorbed in the far field does not change the load on the transmitter.
	- Antenna modeling software always calculates for the far field.

Antenna Modeling and Design.

- Most antenna modeling programs are based on the numerical electromagnetics code (NEC).
- The NEC uses a technique called "method of moments" to model an antenna & predict its performance.

Antenna Modeling and Design.

- All antenna modeling programs provide just about everything you wanted to know about an antenna.
	- Gain.
	- Beamwidth.
	- Pattern ratios (front-to-back, front-to-side, etc.).
	- Polar plots of far-field radiation patterns.
		- Azimuth & elevation.
	- Feed point impedance.
	- SWR vs. frequency.

-
- -
	- physical properties

Antenna Modeling and Design.

- Design Tradeoffs and Optimization.
	- Any antenna design is a compromise.
	- Antenna gain may drop significantly as the frequency is moved away from the design center frequency.

263

Amateur Extra Class

Next Week

Chapter 10 Topics in Radio Propagation Chapter 11 Safety

Practical Antennas

Shortened and Multi-Band Antennas.

- Trap Antennas.
	- Disadvantages:
		- Will not reject harmonics.
		- Traps add loss.
			- Higher Q → Lower loss.
		- Traps narrow bandwidth.
			- Higher $Q \rightarrow$ Narrower bandwidth.

