

Flux and Flares.

- Increasing from one class to the next indicates a ten-fold increase in the solar flux.
- Each class is divided into 10 sub-classes numbered 0-9.
 - The strength of the flux increases linearly with the number.

• e.g. -- an X3 flare 1.5 times as strong as a class X2 flare.

Geomagnetic Field.

- Solar energy & charged particles from the sun deposit energy into the ionosphere and also into the Earth's geomagnetic field.
- For good propagation, the geomagnetic field needs to be stable.
 - Especially at higher latitudes (auroral zones).
- A geomagnetic storm is occurring when the geomagnetic field is disturbed (unstable).

Geomagnetic Field.

- B_z is the intensity & orientation of the interplanetary magnetic field (IMF).
 - If B_z is negative, then the IMF is aligned north-to-south (southward), making it easier for disruptions to occur.

21

Geomagnetic Field.

- The A-index is a measure of the long-term stability of the geomagnetic field.
 - The A-index measures stability over a 24-hour period.
 The A-index is calculated from the previous 8 K-index values.

WABASH VAI AMATE RAD		Sola	r	Effe	cts
		K-Index Values		A-Index Values	
	0	Inactive		0-7	Quiet
	1	Very Quiet		8-15	Unsettled
	2	Quiet		16-29	Active
	3	Unsettled		30-49	Minor Storm
	4	Active		50-99	Major Storm
	5	Minor Storm		100-400	Severe Storm
	6	Major Storm			
	7	Severe Storm			
	8	Very Severe Storm			
	9	Extremely Severe Storm			
-					

Geomagnetic Field.

• The G-Index is a measure of geomagnetic "storminess" and is based on the A & K indices.

G-Index Values					
0	Quiet				
1	Minor				
2	Moderate				
3	Strong				
4	Severe				
5	Extreme				

E3C05 -- What orientation of Bz (B sub z) increases the likelihood that incoming particles from the sun will cause disturbed conditions?

A. Southward

- B. Northward
- C. Eastward
- D. Westward

HF Propagation

In nearly all cases, HF waves travel along the surface of the earth or they are returned to earth after encountering the upper layers of the ionosphere.

Ground-Wave Propagation

- As a ground wave signal travels along the surface of the earth, it is absorbed, decreasing its strength.
 - Absorption is more pronounced at shorter wavelengths.
 At 28 MHz, only useful up to a few miles.
- Most useful during daylight on 160m & 80m.
- Useful for communications between 50-100 miles.

- A. Vertical
- B. Horizontal
- C. Circular
- D. Elliptical

Sky-Wave Propagation

• The maximum one-hop skip distance for sky-wave propagation is about 1500 miles in the E-layer and about 2500 miles in the F-layer.

E3A06 -- What might help to restore contact when DX signals become too weak to copy across an entire HF band a few hours after sunset?

- A. Switch to a higher frequency HF band
- B. Switch to a lower frequency HF band
 - C. Wait 90 minutes or so for the signal degradation to pass
 - D. Wait 24 hours before attempting another communication on the band

Sky-Wave Propagation

- Predicting Propagation.
 - The primary program in use today is:
 - Voice of America Coverage Analysis Program (VOACAP).
 - VOACAP was designed by the VOA to predict HF propagation. between 2 points for the purposes of HF broadcasting.

47

Sky-Wave Propagation

- Absorption.
 - The D layer is closer to the Earth where the atmosphere is more dense.
 - The ionized atoms & molecules are closer together and can recombine more rapidly.
 - The D layer is ionized only during daylight hours.
 - The D layer forms very rapidly at sunrise.
 - The D layer collapses very rapidly at sunset.

E3C03 -- Which of the following signal paths is most likely to experience high levels of absorption when the A index or K index is elevated?

- A. Transequatorial
- B. Polar paths
 - C. Sporadic E
 - D. NVIS

E3C15 -- What might be indicated by a sudden rise in radio background noise across a large portion of the HF spectrum?

- A. A temperature inversion has occurred
- B. A solar flare has occurred
 - C. Increased transequatorial propagation is likely
 - D. Long-path propagation is likely

55

Sky-Wave Propagation

- Long Path and Gray Line Propagation.
 - A slight echo on the received signal may indicate that long path propagation is occurring.
 - With long path propagation, the received signal may be stronger if antenna is pointed 180° away from the station.
 - Long path propagation can occur on all MF & HF bands.
 - 160m through 10m.
 - Most often on 20m.

Sky-Wave Propagation

- Long Path and Gray Line Propagation.
 - During daylight hours, absorption in the D layer prevents long-distance communications on the lower frequency bands.
 - During the nighttime hours, the ionization of the F layer is too low to support long-distance communications on the lower frequency bands.
 - Gray line propagation allows long-distance communications on the lower frequency bands.

Sky-Wave Propagation

- Long Path and Gray Line Propagation.
 - The result is that long distance communications are often possible during twilight hours on the lower frequency bands.
 - 8,000 to 10,000 miles.
 - 160m, 80m, 40m, & possibly 30m.

VHF/UHF/Microwave Propagation

Above 30 MHz, radio waves are rarely refracted back to earth by the ionosphere.

- Must use other techniques for long-distance communications.
- A low-angle of radiation from the antenna is more important than on HF.
- It is more important for the polarization of the transmitting & receiving antennas to match than on HF.

E3C06 -- By how much does the VHF/UHF radiopath horizon distance exceed the geometric horizon?

- A. By approximately 15 percent of the distance
 - B. By approximately twice the distance
 - C. By approximately 50 percent of the distance
 - D. By approximately four times the distance

VHF/UHF/Microwave Propagation

Tropospheric Propagation

- Ducting is more common over water.
- Ducting is rare on 6m.
- Ducting can occur on 2m.
- Ducting is most common on UHF & microwave frequencies.
- Hepburn maps show where conditions exist to support tropospheric ducting.

E3A05 -- Tropospheric propagation of microwave signals often occurs in association with what phenomenon?

- A. Grayline
- B. Lightning discharges
- C. Warm and cold fronts
 - D. Sprites and jets

75

Sporadic E Propagation

- Temporary, highly-ionized areas can form in the E layer.
 - Refraction occurring in these areas is called "sporadic E propagation".
 - These areas can last for a few minutes or for several hours.
 - Sporadic E propagation can occur on:
 - 10m.
 - 6m.
 - 2m.
 - Sporadic E propagation allows contacts of 300 to 1200 miles.

- A. Around the solstices, especially the summer solstice
 - B. Around the solstices, especially the winter solstice
 - C. Around the equinoxes, especially the spring equinox
 - D. Around the equinoxes, especially the fall equinox

Auroral Propagation

- Charged particles from the sun (solar wind) are concentrated over the magnetic poles by the earth's magnetic field & ionize the E-layer.
 - This ionization is visible as the aurora borealis (northern lights) in the northern hemisphere or as the aurora australis (southern lights) in the southern hemisphere.
 - The refraction of VHF & UHF signals in this ionized layer is called "auroral propagation" & can support contacts up to about 1,400 miles.

Auroral Propagation

- Using Auroral Propagation.
 - The antenna should be pointed towards the aurora, **NOT** towards the station being worked.
 - In the US, point the antenna north.
 - The exact antenna direction may need to be adjusted as the location of the aurora changes.
 - An increasing K-index of 3 or more may indicate that auroral propagation is possible.

Meteor Scatter Communications

- The best bands for meteor scatter propagation are 10m, 6m, & 2m.
 - 20 MHz to 432 MHz is possible.
 - Most activity is on 6m.

95

Meteor Scatter Communications

- Operating techniques.
 - Keep transmissions **SHORT** with repeated call signs & signal reports.
 - Divide each minute into four 15-second segments.
 - Stations at the west end of the path transmit during the 1^{st} & 3^{rd} segments.
 - Stations at the east end of the path transmit during the 2nd & 4th segments.

E2D01 -- Which of the following digital modes is designed for meteor scatter communications?

- A. WSPR
- B. MSK144
 - C. Hellschreiber
 - D. APRS

99

E3A08 -- When a meteor strikes the Earth's atmosphere, a cylindrical region of free electrons is formed at what layer of the ionosphere?

- \rightarrow A. The E layer
 - B. The F1 layer
 - C. The F2 layer
 - D. The D layer

101

Earth-Moon-Earth Communications

- A technique for making extremely long distance contacts on VHF & UHF is to reflect a radio wave off the surface of the moon.
 - This technique is referred to as "moon bounce" or EME.
 - If both stations can "see" the moon, they can communicate.
 - Contacts up to nearly 12,000 miles are possible.

Earth-Moon-Earth Communications

- An effect known as "libration fading" is caused by the multipath effects of the rough moon surface in combination with the relative motion between the earth and the moon.
 - Libration fading is a rapid, deep, irregular fading.
 - Up to 20 dB or more.
 - Up to 10 Hz.
 - Can cause slow-speed CW to sound like high-speed CW.

- **B. PACTOR III**
- C. Olivia
- D. JT65

- A. Time synchronous transmissions alternately from each station
 - B. Storing and forwarding digital messages
 - C. Judging optimum transmission times by monitoring beacons reflected from the Moon
 - D. High speed CW identification to avoid fading

E3A01 -- What is the approximate maximum separation measured along the surface of the Earth between two stations communicating by Moon bounce?

- A. 500 miles, if the moon is at perigee
- B. 2000 miles, if the moon is at apogee
- C. 5000 miles, if the moon is at perigee
- D. 12,000 miles, if the moon is visible by both stations

113

E3A03 -- When scheduling EME contacts, which of these conditions will generally result in the least path loss?

- A. When the moon is at perigee
 - B. When the moon is full
 - C. When the moon is at apogee
 - D. When the MUF is above 30 MHz

Hazardous Materials

PCBs

- Avoid skin contact with PCBs.
 - Wear rubber gloves
 - Wipe down the case with a paper towel.
- Properly dispose of the component & the materials used to handle it.

Hazardous Materials

Lead and Soldering

- Standard solder is an alloy of lead and tin.
- The dangers from soldering **do not** include the inhaling of lead vapors.
 - The temperatures involved in soldering are not not high enough to create lead vapor. The fumes/vapors created during soldering are caused by burning flux.
- The danger of using solder containing lead is the accidental ingestion of lead after handling the solder.
 - Wash hands thoroughly before handling food.

Hazardous Materials

Carbon Monoxide

- Generators & fossil fuel heaters must only be used in open, well-ventilated areas.
- Install carbon monoxide detectors in any area occupied by people where CO gas may accumulate.
- Fuel must not be stored by the generator or heater.

123

E0A07 -- How may dangerous levels of carbon monoxide from an emergency generator be detected?

A. By the odor

- B. Only with a carbon monoxide detector
 - C. Any ordinary smoke detector can be used
 - D. By the yellowish appearance of the gas

E0A09 -- Which insulating material commonly used as a thermal conductor for some types of electronic devices is extremely toxic if broken or crushed and the particles are accidentally inhaled?

- A. Mica
- B. Zinc oxide
- 🔶 C. Beryllium Oxide
 - D. Uranium Hexaflouride

125

E0A10 -- What toxic material may be present in some electronic components such as high voltage capacitors and transformers?

- A. Polychlorinated biphenyls
 - B. Polyethylene
 - C. Polytetrafluroethylene
 - D. Polymorphic silicon

Non-ionizing radiation

- Non-ionizing radiation is radiation where the energy is sufficient to strip electrons from atoms or to break atoms apart.
 - All radio frequency energy is non-ionizing.

Power Density

- RF energy at low levels is not dangerous.
 - RF energy is only dangerous when the level is high enough to cause the heating of body tissue.
 - Heating is caused by the body absorbing RF energy.
 - The intensity of RF energy is called the power density.
 Measured in mW/cm².

Absorption and Limits

- The rate at which the body absorbs RF energy is called the "specific absorption rate" or SAR.
 - The SAR varies with frequency & with the size of the body part.
 - The range of the highest SAR is from 30 MHz to 1.3 GHz.
 - For the torso & limbs, the SAR is highest at VHF (30 MHz to 300 MHz).
 - For the head, the SAR is highest at UHF (300 MHz to 3 GHz).
 - For the eyes, the SAR is highest at microwave frequencies below 1 GHz.

Averaging and Duty Cycle

- Controlled and Uncontrolled Environments.
 - In an uncontrolled environment:
 - Individuals are not aware of the presence of RF energy or,
 - Individuals are not knowledgeable about the precautions to be taken.
 - Exposure is averaged over a 30-minute time period.
 - Lower levels of exposure are imposed.

Averaging and Duty Cycle.

- Operational duty cycle.
 - The ratio of the transmitter on time to the total time during the averaging period.

141

Antenna System.

- When determining the exposure, the antenna gain the must be taken into account if in the far field of the antenna.
 - The far field of an antenna is where the antenna pattern does not change with distance.
 - Approximately 10λ from the antenna.

- A. 300 kHz to 3 MHz
- B. 3 to 30 MHz
- ➡ C. 30 to 300 MHz
 - D. 300 to 3000 MHz

145

RF Exposure

Estimating Exposure and Station Evaluation

- All fixed amateur stations must evaluate the RF exposure potential from each transmitter.
 - Mobile & portable stations are exempt.
 - A transmitter is exempt if the output power is below specified limits.
 - The power limits vary by frequency.
 - Only the transmitters that exceed the specified power output limits need to be evaluated.

RF Exposure

Estimating Exposure and Station Evaluation

- Methods of Evaluating RF Exposure.
 - Calculate using formulas.
 - Use charts based on formulas.
 - Use software based on formulas.
 - Need to know:
 - Transmitter output power.
 - Feedline loss.
 - Antenna gain.
 - Antenna height above ground.
 - Frequency.

RF Exposure

Exposure Safety Measures

- Locate antennas where people cannot get near them.
- Do not point antennas at occupied locations.
- Carefully evaluate the exposure potential of "stealth" antennas.
- Use a dummy load when testing transmitters.

E0A04 -- When evaluating a site with multiple transmitters operating at the same time, the operators and licensees of which transmitters are responsible for mitigating over-exposure situations?

- A. Only the most powerful transmitter
- B. Only commercial transmitters
- C. Each transmitter that produces 5 percent or more of its MPE exposure limit at accessible locations
 - D. Each transmitter operating with a duty-cycle greater than 50 percent

An amateur radio station needs to deal with several types of "grounds".

- Electrical safety ground.
- Lightning dissipation ground.
- Common reference potential.
 - a.k.a. RF ground.
- All 3 ground systems should be bonded together at a common point.

